Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(5-Aminoisophthalato- κN)triaqua(1,10phenanthroline- $\kappa^2 N, N'$)cobalt(II) trihydrate

Kou-Lin Zhang,^a Guo-Wang Diao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 7 October 2010; accepted 10 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.086; data-to-parameter ratio = 15.7.

The Co^{II} atom in the title compound, $[Co(C_8H_5NO_4)-(C_{12}H_8N_2)(H_2O)_3]\cdot 3H_2O$, is six-coordinated in a CoN₃O₃ octahedral geometry; the water-coordinated Co^{II} atom is chelated by the *N*-heterocycle. An intermolecular N-H···O hydrogen bond occurs. The carboxylate entity coordinates through the amino group. The carboxylate donor unit, coordinated and uncoordinated water molecules interact through O-H···O and N-H···O hydrogen bonds, generating a tightly-held three-dimensional cage-like network.

Related literature

For related structures, see: He et al. (2006); Wu et al. (2002a,b).

Experimental

Crystal data

$[Co(C_8H_5NO_4)(C_{12}H_8N_2)(H_2O)_3]$
3H ₂ O
$M_r = 526.36$
Monoclinic, $P2_1/n$
a = 10.1182 (2) Å
b = 13.9659 (2) Å
c = 16.2850 (2) Å

$\beta = 95.827 \ (1)^{\circ}$
V = 2289.34 (8) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.81 \text{ mm}^{-1}$
T = 293 K
$0.24 \times 0.22 \times 0.18 \text{ mm}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.803, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.086$ S = 1.045683 reflections 363 parameters 14 restraints 18954 measured reflections 5683 independent reflections 5120 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.47~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.46~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1w−H1w1···O6w ⁱ	0.83 (1)	1.90 (1)	2.734 (1)	175 (2)
O1w−H1w2···O2 ⁱⁱ	0.84(1)	1.81(1)	2.646 (1)	173 (2)
O2w−H2w1···O5w ⁱ	0.83(1)	1.93 (1)	2.761 (1)	174 (2)
O2w−H2w2···O4 ⁱⁱⁱ	0.85 (1)	1.94 (1)	2.790 (1)	173 (2)
O3w−H3w1···O5w ^{iv}	0.84(1)	2.16(2)	2.909 (2)	148 (2)
O3w−H3w2···O3 ⁱⁱ	0.85 (1)	1.86 (1)	2.694 (1)	167 (2)
O4w−H4w1···O6w ^v	0.85(1)	1.98 (1)	2.811(2)	169 (2)
O4w−H4w2···O2 ^{iv}	0.85 (1)	2.05 (1)	2.864 (2)	161 (3)
O5w−H5w1···O1	0.85(1)	1.89 (1)	2.716 (2)	164(2)
O5w−H5w2···O3 ^{vi}	0.85 (1)	1.90 (1)	2.719 (1)	161(2)
O6w−H6w1···O1	0.85 (1)	1.82 (1)	2.665 (1)	174 (2)
O6w−H6w2···O4 ⁱⁱⁱ	0.85 (1)	1.94 (1)	2.784 (1)	174 (2)
$N1 - H1N1 \cdots O4w$	0.85 (1)	2.06 (1)	2.906 (2)	169 (2)
$N1-H1N2\cdots O4^{iii}$	0.84 (1)	2.30 (1)	3.110 (2)	161 (2)
Symmetry codes: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ $-x + \frac{5}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$	-x + 2, -y + (iv) x - 1, y	(1, -z + 1; y, z; (v))	(ii) $x - \frac{1}{2}, -y + \frac{3}{2}, y + \frac{1}{2}, -y + \frac{3}{2}, y + \frac{1}{2}, -y + \frac{1}{2}$	$\frac{1}{2}, z + \frac{1}{2};$ (iii) $-z + \frac{1}{2};$ (vi)

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, the National Natural Science Foundation of China (grant No. 20773107), Yangzhou University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2299).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.
- He, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2006). Chin. J. Inorg. Chem. 22, 142–144.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, C.-D., Liu, C.-Z., Yang, W.-B., Zhuang, H.-H. & Huang, J.-S. (2002a). Inorg. Chem. 41, 3302–3307.
- Wu, C. D., Liu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002b). Z. Anorg. Allg. Chem. 628, 1935–1937.

Acta Cryst. (2010). E66, m1421 [doi:10.1107/S1600536810040560]

$(5-Aminoisophthalato-\kappa N)$ triaqua $(1,10-phenanthroline-\kappa^2 N,N')$ cobalt(II) trihydrate

K.-L. Zhang, G.-W. Diao and S. W. Ng

Comment

The dianion of 5-aminoisophthalic acid binds to cobalt(II) in a bridging μ_4 -manner in the monoaqua derivative (Wu *et al.*, 2002*a*), and the carboxyl oxygen as well as the amino nitrogen atoms are all involved in bonding in the three-dimensional network structure. A diaqua dihydrate has also been reported; the compound has the monoanion in μ_2 bridging that gives rise to a chain motif (Wu *et al.*, 2002*b*). The 4,4'-bipyridine spacer ligand lowers the dimensionality of cobalt 5-aminoisophthalate, and the diqua adduct, which crystallizes as a DMF solvate, exists as linear chains (He *et al.*, 2006). The present 1,10-phenanthroline adduct is a triaqua trihydrate (Scheme I) in which the 5-aminosophthalate dianion binds only through the neutral amino donor site; the coordinated water molecules comprise the *fac* points of the octahedron around the metal atom (Fig. 1). The zwitterionic dianion, the coordinated and lattice water molecules interact through hydrogen bonds (Table 2) to furnish a tightly-held, three-dimensional network. Pairs of phenanthroline units show $\pi \cdots \pi$ interactions about a center-of-inversion at a distance of *ca* 3.5 Å (Fig. 2).

Experimental

Cobalt(II) nitrate hexahydrate (0.048 g, 0.165 mmol) dissolved in water (5 ml) was added to a mixture of 5-amino-isophthalic acid (0.030 g, 0.165 mmol) and sodium hydroxidie (0.013 g, 0.330 mmol) dissolved in water (5 ml). To this solution was added 1,10-phenanthroline (0.033 g, 0.165 mmol) dissolved in methanol (10 ml). The mixture was filtered and set aside for the growth of deep red crystals (35% yield based on the acid). CHN elemental analaysis. Calc. for $C_{20}H_{25}C_0N_3O_{10}$: C 45.63, H 4.79, N 7.98%. Found: C, 45.49; H, 4.89; N,7.91%.

Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The amino and water bound H-atoms were located in difference Fourier maps, and were refined with a distance restraint of N–H = O–H = 0.85 ± 0.01 Å. Their temperature factors were freely refined.

Figures

Fig. 1. Thermal displacement ellipsoid plot of (I) at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radii.

Fig. 2. Two formula units of (I) showing $\pi \cdots \pi$ interactions about a center-of-inversion.

(5-Aminoisophthalato- κN)triaqua(1,10-phenanthroline- $\kappa^2 N$,N')cobalt(II) trihydrate

Crystal data

$[Co(C_8H_5NO_4)(C_{12}H_8N_2)(H_2O)_3]$ ·3H ₂ O	F(000) = 1092
$M_r = 526.36$	$D_{\rm x} = 1.527 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 9790 reflections
a = 10.1182 (2) Å	$\theta = 2.5 - 28.5^{\circ}$
<i>b</i> = 13.9659 (2) Å	$\mu = 0.81 \text{ mm}^{-1}$
c = 16.2850 (2) Å	T = 293 K
$\beta = 95.827 \ (1)^{\circ}$	Prism, red
$V = 2289.34 (8) \text{ Å}^3$	$0.24\times0.22\times0.18~mm$
Z = 4	

Data collection

Bruker APEXII area-detector diffractometer	5683 independent reflections
Radiation source: fine-focus sealed tube	5120 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.027$
φ and ω scans	$\theta_{\text{max}} = 28.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$
$T_{\min} = 0.803, T_{\max} = 1.000$	$k = -18 \rightarrow 18$
18954 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.086$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0539P)^2 + 0.5451P]$ where $P = (F_o^2 + 2F_c^2)/3$
5683 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

363 parameters	$\Delta\rho_{max} = 0.47~e~\text{\AA}^{-3}$
14 restraints	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.742889 (15)	0.684399 (12)	0.466367 (10)	0.01480 (6)
01	1.15673 (10)	0.53092 (8)	0.26398 (8)	0.0313 (2)
O2	1.22644 (9)	0.64316 (8)	0.18340 (7)	0.0283 (2)
O3	0.92170 (9)	0.91482 (7)	0.09694 (6)	0.02231 (19)
O4	0.72213 (9)	0.92307 (7)	0.14075 (6)	0.0237 (2)
O1W	0.76586 (10)	0.70374 (8)	0.59335 (6)	0.0228 (2)
H1W1	0.8296 (15)	0.6766 (13)	0.6202 (12)	0.036 (6)*
H1W2	0.749 (2)	0.7538 (11)	0.6187 (13)	0.052 (7)*
O2W	0.79629 (9)	0.54265 (7)	0.49718 (6)	0.01971 (18)
H2W1	0.7468 (16)	0.5247 (15)	0.5321 (10)	0.037 (6)*
H2W2	0.784 (2)	0.5056 (14)	0.4555 (10)	0.049 (6)*
O3W	0.53714 (9)	0.66780 (8)	0.47286 (6)	0.0235 (2)
H3W1	0.486 (2)	0.6450 (17)	0.4334 (11)	0.057 (7)*
H3W2	0.509 (2)	0.6474 (15)	0.5168 (9)	0.042 (6)*
O4W	0.44314 (12)	0.71848 (11)	0.29095 (9)	0.0424 (3)
H4W1	0.451 (2)	0.7710 (11)	0.2661 (14)	0.056 (7)*
H4W2	0.390 (2)	0.6844 (17)	0.2600 (15)	0.067 (9)*
O5W	1.35918 (11)	0.52866 (8)	0.38701 (7)	0.0276 (2)
H5W1	1.3070 (18)	0.5252 (16)	0.3431 (9)	0.041 (6)*
H5W2	1.4231 (15)	0.4911 (13)	0.3801 (13)	0.040 (6)*
O6W	1.02652 (9)	0.37775 (7)	0.31095 (7)	0.0248 (2)
H6W1	1.063 (2)	0.4287 (10)	0.2960 (13)	0.044 (6)*
H6W2	0.9517 (13)	0.3885 (15)	0.3285 (13)	0.045 (6)*
N1	0.70534 (10)	0.63853 (8)	0.33691 (6)	0.0168 (2)
H1N1	0.6259 (11)	0.6547 (13)	0.3202 (11)	0.023 (4)*
H1N2	0.7054 (19)	0.5782 (7)	0.3384 (12)	0.031 (5)*
N2	0.71726 (11)	0.83333 (8)	0.43935 (7)	0.0198 (2)
N3	0.94173 (10)	0.73017 (8)	0.45306 (7)	0.0186 (2)
C1	0.79644 (12)	0.67271 (9)	0.28227 (7)	0.0155 (2)
C2	0.91651 (12)	0.62476 (9)	0.27734 (7)	0.0166 (2)
H2	0.9344	0.5688	0.3074	0.020*
C3	1.00960 (11)	0.66020 (9)	0.22771 (7)	0.0160 (2)
C4	0.98255 (12)	0.74438 (9)	0.18275 (8)	0.0170 (2)
H4	1.0446	0.7686	0.1498	0.020*
C5	0.86219 (11)	0.79214 (9)	0.18732 (7)	0.0158 (2)
C6	0.76966 (12)	0.75642 (9)	0.23778 (7)	0.0168 (2)
Н6	0.6902	0.7888	0.2415	0.020*
C7	1.14016 (11)	0.60753 (9)	0.22423 (8)	0.0180 (2)
C8	0.83353 (12)	0.88295 (9)	0.13858 (7)	0.0164 (2)
C9	0.60574 (14)	0.88414 (11)	0.43592 (9)	0.0264 (3)
Н9	0.5278	0.8534	0.4466	0.032*
C10	0.60072 (16)	0.98217 (12)	0.41679 (10)	0.0316 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10	0.5210	1.0156	0.4157	0.038*
C11	0.71446 (17)	1.02817 (11)	0.39974 (9)	0.0307 (3)
H11	0.7127	1.0932	0.3875	0.037*
C12	0.83406 (15)	0.97630 (10)	0.40083 (9)	0.0259 (3)
C13	0.83020 (13)	0.87881 (10)	0.42259 (8)	0.0195 (2)
C14	0.95735 (17)	1.01683 (12)	0.38069 (11)	0.0365 (4)
H14	0.9602	1.0810	0.3657	0.044*
C15	1.06906 (17)	0.96363 (13)	0.38306 (12)	0.0379 (4)
H15	1.1469	0.9912	0.3682	0.045*
C16	1.06940 (14)	0.86486 (12)	0.40818 (10)	0.0280 (3)
C17	0.95058 (13)	0.82265 (10)	0.42820 (8)	0.0198 (2)
C18	1.18338 (15)	0.80580 (13)	0.41512 (11)	0.0353 (4)
H18	1.2640	0.8297	0.4013	0.042*
C19	1.17504 (14)	0.71351 (13)	0.44210 (11)	0.0326 (3)
H19	1.2503	0.6749	0.4482	0.039*
C20	1.05169 (13)	0.67760 (10)	0.46052 (9)	0.0245 (3)
H20	1.0469	0.6147	0.4786	0.029*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.01501 (9)	0.01376 (10)	0.01610 (10)	0.00058 (5)	0.00396 (6)	0.00020 (6)
01	0.0198 (4)	0.0260 (5)	0.0490 (7)	0.0059 (4)	0.0081 (4)	0.0196 (5)
O2	0.0216 (4)	0.0249 (5)	0.0407 (6)	0.0061 (4)	0.0137 (4)	0.0139 (5)
O3	0.0215 (4)	0.0204 (5)	0.0265 (5)	0.0018 (4)	0.0095 (3)	0.0082 (4)
O4	0.0216 (4)	0.0192 (5)	0.0320 (5)	0.0066 (4)	0.0109 (4)	0.0087 (4)
O1W	0.0260 (5)	0.0237 (5)	0.0185 (4)	0.0059 (4)	0.0009 (4)	-0.0061 (4)
O2W	0.0266 (4)	0.0146 (4)	0.0182 (4)	-0.0006 (4)	0.0031 (3)	-0.0010 (4)
O3W	0.0170 (4)	0.0344 (5)	0.0198 (5)	-0.0033 (4)	0.0045 (3)	-0.0009 (4)
O4W	0.0265 (5)	0.0461 (8)	0.0526 (8)	-0.0063 (5)	-0.0051 (5)	0.0224 (7)
O5W	0.0306 (5)	0.0256 (5)	0.0269 (5)	0.0060 (4)	0.0045 (4)	0.0030 (4)
O6W	0.0206 (4)	0.0192 (5)	0.0354 (5)	0.0003 (4)	0.0073 (4)	0.0018 (4)
N1	0.0181 (4)	0.0166 (5)	0.0165 (5)	-0.0001 (4)	0.0058 (4)	0.0032 (4)
N2	0.0202 (5)	0.0180 (5)	0.0214 (5)	0.0022 (4)	0.0036 (4)	0.0007 (4)
N3	0.0171 (5)	0.0184 (5)	0.0205 (5)	-0.0001 (4)	0.0025 (4)	-0.0015 (4)
C1	0.0175 (5)	0.0165 (5)	0.0132 (5)	-0.0008 (4)	0.0041 (4)	0.0009 (4)
C2	0.0192 (5)	0.0147 (5)	0.0161 (5)	0.0009 (4)	0.0024 (4)	0.0027 (4)
C3	0.0157 (5)	0.0152 (5)	0.0172 (5)	0.0011 (4)	0.0022 (4)	0.0005 (4)
C4	0.0171 (5)	0.0167 (6)	0.0180 (5)	0.0000 (4)	0.0051 (4)	0.0024 (5)
C5	0.0175 (5)	0.0139 (5)	0.0166 (5)	0.0008 (4)	0.0041 (4)	0.0022 (4)
C6	0.0168 (5)	0.0172 (6)	0.0171 (5)	0.0020 (4)	0.0051 (4)	0.0006 (5)
C7	0.0152 (5)	0.0166 (6)	0.0222 (6)	0.0011 (4)	0.0020 (4)	0.0028 (5)
C8	0.0194 (5)	0.0136 (5)	0.0164 (5)	0.0008 (4)	0.0035 (4)	0.0018 (4)
C9	0.0251 (6)	0.0243 (7)	0.0308 (7)	0.0063 (5)	0.0066 (5)	0.0030 (6)
C10	0.0378 (8)	0.0258 (7)	0.0313 (7)	0.0149 (6)	0.0044 (6)	0.0046 (6)
C11	0.0465 (8)	0.0180 (6)	0.0267 (7)	0.0059 (6)	-0.0005 (6)	0.0034 (6)
C12	0.0349 (7)	0.0185 (6)	0.0236 (6)	-0.0026 (5)	-0.0004 (5)	0.0037 (5)
C13	0.0234 (6)	0.0172 (6)	0.0178 (5)	-0.0011 (5)	0.0019 (4)	0.0006 (5)

C14	0.0441 (9)	0 0232 (7)	0.0416 (9)	-0.0111 (6)	0.0012(7)	0.0102(7)	
C15	0.0344(8)	0.0232(7) 0.0343(9)	0.0454(9)	-0.0116(7)	0.0012(7)	0.0102(7) 0.0089(7)	
C16	0.0239(6)	0.0296 (7)	0.0309(7)	-0.0085(6)	0.0050 (5)	0.0024 (6)	
C17	0.0196 (6)	0.0199(6)	0.0201 (6)	-0.0025(5)	0.0026 (4)	-0.0012(5)	
C18	0.0186 (6)	0.0439 (10)	0.0441 (9)	-0.0075(6)	0.0068 (6)	-0.0006(7)	
C19	0.0166 (6)	0.0376 (8)	0.0436 (9)	0.0031 (6)	0.0034 (6)	-0.0033(7)	
C20	0.0202 (6)	0.0229 (7)	0.0302 (7)	0.0027 (5)	0.0011 (5)	-0.0025(5)	
Geometric paran	neters (Å. °)						
	(,)	2.0750(10)	C1	C2		1 20(7 (1()	
Col—Olw		2.0750 (10)	C1—	-02		1.3967 (16)	
Co1 = O2W		2.0995 (9)	C2—	-0.3		1.3927 (10)	
Co1 = O3 W		2.1080(9) 2.1264(12)	C2—	-fi2		0.9300 1 2074 (17)	
Col = N2		2.1304(12) 2.1429(10)	C3—	-C4		1.5974 (17)	
Col—N1		2.1429(10) 2.1992(11)	C4—	-C7		1.3131 (16)	
C01 = C7		2.1992 (11) 1.2530 (16)	C4—	-С.5 НИ		0.0300	
01 = 07		1.2330(10) 1.2530(15)	C4—	-114		1 3989 (16)	
$02 - C^{7}$		1.2330(13) 1.2556(14)	C5—	-C8		1.5989 (10)	
04-08		1.2536 (14)	C6	-H6		0.9300	
01W—H1W1		0.83(1)	C9	-C10		1 404 (2)	
01W - H1W2		0.84(1)	C9	-H9		0.9300	
02W - H2W1		0.83(1)	C10-			1 371 (2)	
O2W H2W2		0.85(1)	C10-	-H10		0.9300	
O3W—H3W1		0.83(1)	C11-			1 409 (2)	
O3W - H3W2		0.85(1)) C11-H11			0.9300	
04W—H4W1		0.85(1)	C12-			1 4085 (19)	
O4W—H4W2		0.85 (1)	C12-			1.438 (2)	
05W—H5W1		0.85 (1)	C12			1.4437 (18)	
O5W—H5W2		0.85 (1)	C14-			1.350 (3)	
O6W—H6W1		0.85 (1)	C14-	-H14		0.9300	
O6W—H6W2		0.85 (1)	C15-	C16		1.439 (2)	
N1—C1		1.4269 (15)	C15-	-H15		0.9300	
N1—H1N1		0.85 (1)	C16-	C17		1.4066 (18)	
N1—H1N2		0.84 (1)	C16-	C18		1.413 (2)	
N2—C9		1.3293 (17)	C18-	C19		1.367 (2)	
N2—C13		1.3590 (17)	C18-	-H18		0.9300	
N3—C20		1.3282 (17)	C19–	C20		1.405 (2)	
N3—C17		1.3593 (17)	C19–	-H19		0.9300	
C1—C6		1.3876 (17)	C20-	-H20		0.9300	
O1W—Co1—O2V	W	83.37 (4)	С3—	-C4—H4		120.0	
O1W-Co1-O3V	W	88.60 (4)	C4—	-C5—C6		120.00 (11)	
O2W—Co1—O3V	W	96.65 (4)	C4—	-C5C8		119.70 (10)	
O1W—Co1—N2		94.45 (4)	С6—	-C5-C8		120.29 (11)	
O2W—Co1—N2		171.97 (4)	C1—	-C6—C5		120.02 (11)	
O3W—Co1—N2		91.01 (4)	C1—	-С6—Н6		120.0	
O1W—Co1—N3		92.90 (4)	С5—	-С6—Н6		120.0	
O2W—Co1—N3		94.82 (4)	02—	-C701		123.33 (11)	
O3W—Co1—N3		168.53 (4)	02—	-C7—C3		118.90 (11)	

$N2 C_{2}1 N2$	77.54(4)	01 C7 C2	117.76(11)
$N_2 = C_0 I = N_3$	160 81 (4)	01 - 07 - 03	117.70(11) 122.90(11)
$O_1 W = Co_1 = N_1$	109.81 (4) 88.26 (4)	03 - 03 - 04	122.30(11) 118.22(11)
$O_2 W = Co1 = N1$	86.20 (4)	03 - 03 - 03	118.22 (11)
$N_2 = C_0 I = N_1$	94.62(4)	$N_{2} = C_{0} = C_{1}^{10}$	118.88(10) 122.77(14)
$N_2 = Co1 = N1$	94.02(4) 93.59(4)	$N_2 = C_3 = C_{10}$	122.77 (14)
$C_{01} = 01W = H1W1$	95.59 (4) 117 8 (15)	12 - 0 - 119	118.0
$C_{01} = 01W = H1W2$	117.8 (15)	$C_{10} = C_{10} = C_{10}$	110.0 110.33(14)
$H_1W_1 = O_1W = H_1W_2$	120.2(10)	$C_{11} = C_{10} = C_{10}$	119.33 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108(2) 1068(15)	C_{11} C_{10} H_{10}	120.3
$C_{01} = 0.2 \text{ W} = 112 \text{ W}^{1}$	100.8(15)	$C_{10} = C_{11} = C_{12}$	120.3
12 W 1 O 2 W - 112 W 2	111.3(10) 108(2)	$C_{10} = C_{11} = C_{12}$	119.01 (14)
$n_2 \le 1 \longrightarrow 02 \le m_2 \le 2$	100(2) 122.1 (17)	C12 C11 H11	120.2
Co1 = O3W = H3W1	122.1(17) 120.1(15)	C_{12} C_{12} C_{11}	120.2
	120.1(13)	C13 - C12 - C14	117.05 (15)
$H_{3W1} = 0.5W = H_{3W2}$	100(2)	$C_{13} - C_{12} - C_{14}$	119.00 (14)
H4W1 = O4W = H4W2	107 (2)	C11 - C12 - C14	123.96 (14)
H5w1—05w—H5w2	106 (2)	N2-C13-C12	123.20 (12)
H6WI = O6W = H6W2	112 (2)	$N_2 = C_{13} = C_{17}$	117.04 (12)
CI = NI = UINI	110.15 (8)	C12 - C13 - C17	119.75 (12)
CI-NI-HINI	111.1(12)	C15 - C14 - C12	121.35 (14)
Col—NI—HINI	107.1 (12)	C15C14H14	119.3
CI—NI—HIN2	110.7 (13)	C12—C14—H14	119.3
Col—NI—HIN2	105.3 (13)	C14—C15—C16	120.90 (14)
HINI—NI—HIN2	105.8 (18)	С14—С15—Н15	119.5
C9 = N2 = C13	118.01 (12)	C16—C15—H15	119.5
C9—N2—Col	127.81 (10)	CI7-CI6-CI8	116.54 (14)
C13—N2—Co1	114.17 (9)	C17—C16—C15	119.36 (14)
C20—N3—C17	118.20 (11)	C18—C16—C15	124.11 (14)
C20—N3—Co1	127.75 (10)	N3—C17—C16	123.43 (13)
C17—N3—Co1	113.86 (8)	N3—C17—C13	117.02 (11)
C6—C1—C2	119.92 (11)	C16—C17—C13	119.55 (13)
C6—C1—N1	120.22 (11)	C19—C18—C16	119.97 (14)
C2—C1—N1	119.75 (11)	C19—C18—H18	120.0
C3—C2—C1	120.43 (11)	C16—C18—H18	120.0
C3—C2—H2	119.8	C18—C19—C20	119.35 (14)
С1—С2—Н2	119.8	C18—C19—H19	120.3
C2—C3—C4	119.67 (11)	С20—С19—Н19	120.3
C2—C3—C7	119.46 (11)	N3—C20—C19	122.48 (14)
C4—C3—C7	120.86 (11)	N3—C20—H20	118.8
C5—C4—C3	119.95 (11)	C19—C20—H20	118.8
С5—С4—Н4	120.0		
O1W—Co1—N1—C1	-145.0 (2)	C4—C5—C8—O3	-2.25 (18)
O2W—Co1—N1—C1	-110.28 (9)	C6—C5—C8—O3	176.88 (12)
O3W—Co1—N1—C1	152.95 (9)	C4—C5—C8—O4	177.14 (12)
N2-Co1-N1-C1	62.21 (9)	C6—C5—C8—O4	-3.73 (18)
N3—Co1—N1—C1	-15.56 (9)	C13—N2—C9—C10	-0.8 (2)
O1W—Co1—N2—C9	-85.16 (12)	Co1—N2—C9—C10	-179.49 (11)
O3W—Co1—N2—C9	3.51 (12)	N2-C9-C10-C11	0.9 (2)
N3—Co1—N2—C9	-177.16 (13)	C9-C10-C11-C12	0.7 (2)

N1—Co1—N2—C9	90.18 (12)	C10-C11-C12-C13	-2.1 (2)
O1W—Co1—N2—C13	96.06 (9)	C10-C11-C12-C14	177.43 (16)
O3W—Co1—N2—C13	-175.26 (9)	C9—N2—C13—C12	-0.9 (2)
N3—Co1—N2—C13	4.07 (9)	Co1—N2—C13—C12	178.02 (10)
N1—Co1—N2—C13	-88.59 (9)	C9—N2—C13—C17	178.87 (12)
O1W—Co1—N3—C20	85.77 (12)	Co1—N2—C13—C17	-2.23 (15)
O2W—Co1—N3—C20	2.19 (12)	C11—C12—C13—N2	2.3 (2)
O3W—Co1—N3—C20	-176.94 (17)	C14—C12—C13—N2	-177.27 (14)
N2-Co1-N3-C20	179.69 (12)	C11—C12—C13—C17	-177.44 (13)
N1—Co1—N3—C20	-86.36 (12)	C14—C12—C13—C17	3.0 (2)
O1W—Co1—N3—C17	-99.37 (9)	C13—C12—C14—C15	-0.7 (2)
O2W—Co1—N3—C17	177.06 (9)	C11—C12—C14—C15	179.79 (16)
O3W—Co1—N3—C17	-2.1 (3)	C12-C14-C15-C16	-1.8 (3)
N2—Co1—N3—C17	-5.45 (9)	C14—C15—C16—C17	1.9 (3)
N1—Co1—N3—C17	88.50 (9)	C14—C15—C16—C18	-177.55 (17)
Co1—N1—C1—C6	-92.87 (12)	C20—N3—C17—C16	1.5 (2)
Co1—N1—C1—C2	83.33 (13)	Co1—N3—C17—C16	-173.89 (11)
C6—C1—C2—C3	-0.27 (19)	C20—N3—C17—C13	-178.51 (12)
N1—C1—C2—C3	-176.48 (11)	Co1—N3—C17—C13	6.10 (15)
C1—C2—C3—C4	0.13 (19)	C18—C16—C17—N3	-0.1 (2)
C1—C2—C3—C7	179.20 (11)	C15-C16-C17-N3	-179.52 (14)
C2—C3—C4—C5	-0.45 (19)	C18—C16—C17—C13	179.94 (14)
C7—C3—C4—C5	-179.51 (11)	C15—C16—C17—C13	0.5 (2)
C3—C4—C5—C6	0.91 (19)	N2-C13-C17-N3	-2.64 (18)
C3—C4—C5—C8	-179.95 (11)	C12-C13-C17-N3	177.12 (12)
C2—C1—C6—C5	0.73 (19)	N2-C13-C17-C16	177.35 (12)
N1-C1-C6-C5	176.92 (11)	C12—C13—C17—C16	-2.9 (2)
C4—C5—C6—C1	-1.06 (19)	C17—C16—C18—C19	-1.6 (2)
C8—C5—C6—C1	179.81 (11)	C15-C16-C18-C19	177.86 (17)
C2—C3—C7—O2	-175.69 (12)	C16-C18-C19-C20	1.7 (3)
C4—C3—C7—O2	3.38 (19)	C17—N3—C20—C19	-1.3 (2)
C2—C3—C7—O1	3.05 (18)	Co1—N3—C20—C19	173.33 (11)
C4—C3—C7—O1	-177.88 (13)	C18—C19—C20—N3	-0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O1w—H1w1···O6w ⁱ	0.83 (1)	1.90 (1)	2.734 (1)	175 (2)
O1w—H1w2···O2 ⁱⁱ	0.84 (1)	1.81 (1)	2.646 (1)	173 (2)
O2w—H2w1···O5w ⁱ	0.83 (1)	1.93 (1)	2.761 (1)	174 (2)
O2w—H2w2···O4 ⁱⁱⁱ	0.85 (1)	1.94 (1)	2.790 (1)	173 (2)
O3w—H3w1···O5w ^{iv}	0.84 (1)	2.16 (2)	2.909 (2)	148 (2)
O3w—H3w2···O3 ⁱⁱ	0.85 (1)	1.86 (1)	2.694 (1)	167 (2)
$O4w$ — $H4w1$ ··· $O6w^v$	0.85 (1)	1.98 (1)	2.811 (2)	169 (2)
O4w—H4w2···O2 ^{iv}	0.85 (1)	2.05 (1)	2.864 (2)	161 (3)
O5w—H5w1…O1	0.85 (1)	1.89 (1)	2.716 (2)	164 (2)
O5w—H5w2···O3 ^{vi}	0.85 (1)	1.90 (1)	2.719 (1)	161 (2)

O6w—H6w1…O1	0.85 (1)	1.82 (1)	2.665 (1)	174 (2)
O6w—H6w2···O4 ⁱⁱⁱ	0.85 (1)	1.94 (1)	2.784 (1)	174 (2)
N1—H1N1···O4w	0.85 (1)	2.06 (1)	2.906 (2)	169 (2)
N1—H1N2···O4 ⁱⁱⁱ	0.84 (1)	2.30 (1)	3.110 (2)	161 (2)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) *x*-1/2, -*y*+3/2, *z*+1/2; (iii) -*x*+3/2, *y*-1/2, -*z*+1/2; (iv) *x*-1, *y*, *z*; (v) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) -*x*+5/2, *y*-1/2, -*z*+1/2.

Fig. 1

Fig. 2

